Properties of Generalized Berwald Connections

نویسنده

  • A. Tayebi
چکیده

Recently the present authors introduced a general class of Finsler connections which leads to a smart representation of connection theory in Finsler geometry and yields to a classification of Finsler connections into the three classes. Here the properties of one of these classes namely the Berwald-type connections which contains Berwald and Chern(Rund) connections as a special case is studied. It is proved among the other that the hv-curvature of these connections vanishes if and only if the Finsler space is a Berwald one. Some applications of this connection is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Symmetric Berwald Spaces

In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.

متن کامل

On BC-generalized Landsberg Finsler metrics

Equality of hh -curvatures of the Berwald and Cartan connections leads to a new class of Finsler metrics, socalled BC-generalized Landsberg metrics. Here, we prove that every BC-generalized Landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.

متن کامل

The Berwald-type connection associated to time-dependent second-order differential equations

We investigate the notions of a connection of Finsler type and of Berwald type on the first jet bundle J1π of a manifold E which is fibred over IR. Such connections are associated to a given horizontal distribution on the bundle π0 1 : J 1π → E, which in particular may come from a time-dependent system of second-order ordinary differential equations. In order to accomodate three existing constr...

متن کامل

Generalization of Hashiguchi–Ichijyō’s Theorems to Wagner–type manifolds

We introduced a class of conformally invariant Ehresmann connections so–called L-horizontal endomorphism in [7]. Using this class, we define conformally invariant manifolds: Wagner–type manifold and locally Minkowski–type manifold as special generalized Berwald manifolds. Then a generalization of Hashiguchi–Ichijyō’s Theorems to Wagner–type manifolds is presented. Mathematics Subject Classifica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009