Properties of Generalized Berwald Connections
نویسنده
چکیده
Recently the present authors introduced a general class of Finsler connections which leads to a smart representation of connection theory in Finsler geometry and yields to a classification of Finsler connections into the three classes. Here the properties of one of these classes namely the Berwald-type connections which contains Berwald and Chern(Rund) connections as a special case is studied. It is proved among the other that the hv-curvature of these connections vanishes if and only if the Finsler space is a Berwald one. Some applications of this connection is discussed.
منابع مشابه
Generalized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملOn BC-generalized Landsberg Finsler metrics
Equality of hh -curvatures of the Berwald and Cartan connections leads to a new class of Finsler metrics, socalled BC-generalized Landsberg metrics. Here, we prove that every BC-generalized Landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.
متن کاملThe Berwald-type connection associated to time-dependent second-order differential equations
We investigate the notions of a connection of Finsler type and of Berwald type on the first jet bundle J1π of a manifold E which is fibred over IR. Such connections are associated to a given horizontal distribution on the bundle π0 1 : J 1π → E, which in particular may come from a time-dependent system of second-order ordinary differential equations. In order to accomodate three existing constr...
متن کاملGeneralization of Hashiguchi–Ichijyō’s Theorems to Wagner–type manifolds
We introduced a class of conformally invariant Ehresmann connections so–called L-horizontal endomorphism in [7]. Using this class, we define conformally invariant manifolds: Wagner–type manifold and locally Minkowski–type manifold as special generalized Berwald manifolds. Then a generalization of Hashiguchi–Ichijyō’s Theorems to Wagner–type manifolds is presented. Mathematics Subject Classifica...
متن کامل